
We transform automotive mobility

CARIAD
Challenges in 3-staged development layers

Achim Hoenow

March 2025 | Achim Hoenow

External
2

Motivation

Motivation – Example Plug & Charge

3
March 2025 | Achim Hoenow

External

Powertrain
ECU

ADAS
ECU

Infotainment
ECU

Body
ECU

Gateway
ECU

Cloud

#1 SWC#2 SWC #3 SWC #4 SWC

#5 SWC #6 SWC #7 SWC

#8 SWC #10 SWC #9 SWC

#11 SWC

#1 SWC #2 SWC #11 SWC…Function is equal to an E2E Functional Chain (“E2E Wirkkette“): #3 SWC

Agenda

4

// Motivation

// 3-Staged Development Layers

// Managing Complexity

// Quality Management

// Outlook & Summary

March 2025 | Achim Hoenow

External

March 2025 | Achim Hoenow

External
5

3-Staged Development Layers

<<<<<<<<<<

<

3-Staged Development Layers

6
March 2025 | Achim Hoenow

External

Application SW
Layer

SYS-SW Layer

HW Layer

ECU

Application SW
Layer

SYS-SW Layer

HW Layer

ECU

Application SW
Layer

SYS-SW Layer

HW Layer

ECU

Function Layer

Software Layer

Hardware and
Basic SW Layer

Require-
ments

Break-
Down

Car functions are the origin of development: Start of requirements breakdown – End with Function Release

<

3-Staged Development Layers – Single Function

7
March 2025 | Achim Hoenow

External

Function – Realized by E2E Functional Chain

E2E Functional Chain is the connecting link between Domain and Realization Level

#1 SW
Component

ECU A
Hardware

#2 SW
Component

ECU B
Hardware

#3 SW
Component

#4 SW
Component

ECU C
Hardware

Domain
Level*

Realization
Level*

Key facts of E2E Architecture

> 700 Functions
> 500 SW Components
~ 3-5 High Performance ECUs
> 50 Standard ECUs

Functional Chains contains
between 1 and >20 Software
Components

One Software Component can
contribute to more than 200
different functions!

Software
Layer

<<<<<<<<<<

* Domain Driven Design [E. Evans]

March 2025 | Achim Hoenow

External
8

Managing Complexity

Managing Complexity

9

Complexity is given on both levels “Domain Level” and “Realization Level” and between their interfaces

March 2025 | Achim Hoenow

External

Examples for managing complexity on Domain Level (key driver: communications between parties):

- Partitioning of functions to groups of similar Knowledge Areas (e.g. ADAS, Infotainment, Body, Connect)
- Equal process steps, tools and communications (e.g. reporting) between Knowledge Areas

Examples for managing complexity on Realization Level (key driver: interfaces between elements):

- Completely documented and under change control E2E Functional Chain for realization, testing and error
management

- Equal process steps, tools and control boards (e.g. Change Control Boards) on interfaces

Key drivers of complexity are the interfaces on human and technical level

Managing Complexity – Realization of function

10
March 2025 | Achim Hoenow

External

Function realization is vice versa to historical ECU development: SW before HW

How to release a new function or a function change on domain and realization level?

Feature
(Change)
Request

Knowledge Area (Lead)

Knowledge Area (impact)

Knowledge Area (impact)

SW Component

SW Component

SW Component

SW Component

SW Component

SW Component

ECU Integration

ECU Integration

ECU Integration

Knowledge Area Test

Knowledge Area Test

Knowledge Area Test

Car Level

Test

Realization Level Domain Level
Domain
Validation
Level

Managing Complexity – Realization of functions

11

Circumstances in function realization model

March 2025 | Achim Hoenow

External

- Feature (Change) Request is assigned to one leading Knowledge Area for realization and responsibility
- Feature (Change) Request is assigned in a 1:N dependencies to SW components
- Knowledge Area can be responsible for 1 to M SW components and for 0 to N ECUs
- Test criteria needs to be defined on SW Component (e.g. SIL), ECU (e.g. HIL), Knowledge Area (e.g. HIL)

and Car Level.
Final “release” – feature testing can only be done on complete Car Level

- Cross functionality (safety, security, diagnosis, Update/OTA) is realized by and associated to functions

Function realization is abstract below car level

Managing Complexity – ECU Level

12
March 2025 | Achim Hoenow

External

ECU realization is different to “One Supplier ECU” development: No unique responsibility and testability

Application SW
Layer

SYS-SW Layer

HW Layer

ECU

HW Layer

SYS-SW Layer

Application SW Layer

SWC #1 SWC #2

SWC #1 SWC #2

SWC #N-1 SWC #N

…

SWC #N+1 SWC #N+2

SWC #M-1 SWC #M

… Hardware on SYS-SW Layer often realized by
one TIER1 supplier. Series production of ECU
executed by same supplier (industrialization)

SW Components of Application SW Layer are
delivered by different suppliers including OEM
itself. Expertise of supplier is key driver. “Proven
in use” as well as new developed SW
Components will be integrated

Complexity of SW Integration on ECU level is dependent to number of suppliers and its contracts with OEM.
Test on single ECU level can only be done for function fragments and basic software of SYS-SW Layer

March 2025 | Achim Hoenow

External
13

Quality Management

Quality Management

14

Prerequisites and Circumstances

March 2025 | Achim Hoenow

External

- No explicit standards existing for the presented 3 staged layer model
- VDA 2 to be used for releasing ECU HW and SW - VDA 2 is entry point for quality management

- but ECU responsibility and testability is not given for standalone ECUs with software components
- Releasing verification and validation tests are done on car level based on functions

- Cross functionality (safety, security, diagnosis, network, Update/OTA) is associated to functions
- E2E Functional Chain is the connecting link between Function and Software/Hardware Layer
- Key drivers of complexity are the interfaces on human and technical level (see above)

- Interfaces needs to be in focus of an effective quality management

Challenges for Quality Management to adapt existing standards for all three levels

Quality Management – Maturity of elements

15
March 2025 | Achim Hoenow

External

Maturity of elements of 3 layer development model is key for quality control and releasing E2E System

Function Maturity:
Maturity Grade for every function including cross functionality
(safety, security, diagnosis, network, OTA) according a life cycle
from idea to release

Hardware Maturity:
Maturity Grade for every ECU based on standards, e.g. VDA2,
VDA6.3, APQP

Software Maturity:
Maturity Grade for every software component and aggregated
software components on ECU level. VDA2 is reference
(product/process quality)

Function-Software Maturity:
Maturity Grade for E2E functional chain according (e.g. SW
Maturity of SW components of functions) life cycle from idea to
release

Quality Management – Maturity of Interfaces

16
March 2025 | Achim Hoenow

External

Managing quality by mastering the complexity of the model

CCB with quality gate for
every feature (change)
request.
Severity of errors in
domain specification are
spread 1:N to SW
components

ECU Integration quality
gate:
Check of test vectors of all
integrated SW component.
Execution of OEM defined
tests as outcoming
inspection

Car level Integration quality gate:
Incoming inspection of all ECUs based on test
vector results for product and production.
Smoke tests of test vectors of all Knowledge
Areas as first level test

Quality Management – Limitations

17
March 2025 | Achim Hoenow

External

Historical quality assurance metrics and standards needs to be analyzed and adapted

- Existing standards are often based on “functionality on one ECU”
Standards needs to be adapted and reworked for three staged layers systems

- Automotive SPICE is a very well-established process quality management measurement method on SW
development level but has gaps on system level (e.g. SYS.3 System Architecture) and needs to be adapted
on function level

- Many software metrics are historically defined for hand coded C software on Classical Autosar systems
- Today’s high-performance ECUs use modern computer languages (e.g. JAVA, C#) running on modern

operating systems (e.g. Linux, Android) with dynamic memory usage instead of statical memory
allocation

- Code generation is used for many software applications
- Metris needs to be adapted, newly defined or set to obsolete. Identification of effective metrics is key!

For less effective metrics cost-benefit ratio needs to be analyzed!

March 2025 | Achim Hoenow

External
18

Outlook & Summary

Outlook

19
March 2025 | Achim Hoenow

External

Further complexity drivers are known and needs to take into coordination for an E2E architectur

- Updates (Digital lifecycle management)
- Operating Systems
- Backwards compatibility
- Carry Over Parts (cross different E2E architectures)
- HW Revisions
- Different Tool Chains (e.g., update tool chains of different brands)
- Fulfillment proof of „State of the Art“
- etc.

Summary

20
March 2025 | Achim Hoenow

External

We transform automotive mobility

Thank you!

Abstract

22

In the past, an electronic control unit (ECU) realized one or more functions with very little interoperability towards other
ECUs . An OEM usually outsourced the ECU development to exactly one supplier with full warranty and liability.
Today, in addition to classic ECUs, vehicles have high-performance computers that together implement complex functions,
such as Plug and Charge, driver assistance, connect and infotainment functions.

A complex function is realized by a chain of software components on a number of ECUs, which leads to three
development layers:
i) Functions ii) ECU/Hardware with basic software and iii) Software Components

The development challenges arise from the high complexity that results from multi-matrix organizations which is needed
to develop the so called End-to-End (E2E) Architecture.
Which proven and new quality methods can be used to master the challenges to release the E2E Architecture according
standards? Which methods are efficient or less valuable or even obsolete?

March 2025 | Achim Hoenow

External

